Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In

Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here

Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Have an account? Sign In Now

You must login to ask question.

Forgot Password?

Need An Account, Sign Up Here

Please briefly explain why you feel this question should be reported.

Please briefly explain why you feel this answer should be reported.

Please briefly explain why you feel this user should be reported.

Sign InSign Up

StackOverflow Point

StackOverflow Point Navigation

  • Web Stories
  • Badges
  • Tags
Search
Ask A Question

Mobile menu

Close
Ask a Question
  • Web Stories
  • Badges
  • Tags
Home/ Questions/Q 245297
Next
Alex Hales
  • 0
Alex HalesTeacher
Asked: August 17, 20222022-08-17T02:52:26+00:00 2022-08-17T02:52:26+00:00In: Machine Learning, machine-learning, scikit-learn, svm

machine learning – When should one use LinearSVC or SVC?

  • 0

[ad_1]

Mathematically, optimizing an SVM is a convex optimization problem, usually with a unique minimizer. This means that there is only one solution to this mathematical optimization problem.

The differences in results come from several aspects: SVC and LinearSVC are supposed to optimize the same problem, but in fact all liblinear estimators penalize the intercept, whereas libsvm ones don’t (IIRC). This leads to a different mathematical optimization problem and thus different results. There may also be other subtle differences such as scaling and default loss function (edit: make sure you set loss="hinge" in LinearSVC). Next, in multiclass classification, liblinear does one-vs-rest by default whereas libsvm does one-vs-one.

SGDClassifier(loss="hinge") is different from the other two in the sense that it uses stochastic gradient descent and not exact gradient descent and may not converge to the same solution. However the obtained solution may generalize better.

Between SVC and LinearSVC, one important decision criterion is that LinearSVC tends to be faster to converge the larger the number of samples is. This is due to the fact that the linear kernel is a special case, which is optimized for in Liblinear, but not in Libsvm.

[ad_2]

  • 0 0 Answers
  • 0 Views
  • 0 Followers
  • 0
Share
  • Facebook
  • Report
Leave an answer

Leave an answer
Cancel reply

Browse

Sidebar

Ask A Question

Related Questions

  • xcode - Can you build dynamic libraries for iOS and ...

    • 0 Answers
  • bash - How to check if a process id (PID) ...

    • 2 Answers
  • database - Oracle: Changing VARCHAR2 column to CLOB

    • 4 Answers
  • What's the difference between HEAD, working tree and index, in ...

    • 3 Answers
  • Amazon EC2 Free tier - how many instances can I ...

    • 0 Answers

Stats

  • Questions : 43k

Subscribe

Login

Forgot Password?

Footer

Follow

© 2022 Stackoverflow Point. All Rights Reserved.

Insert/edit link

Enter the destination URL

Or link to existing content

    No search term specified. Showing recent items. Search or use up and down arrow keys to select an item.